Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ning Li, ${ }^{\text {a }}$ * Peng-Mian Huang, ${ }^{\text {b }}$ Xiao-Li Xiong ${ }^{\text {a }}$ and Qiang Cai ${ }^{\text {a }}$

${ }^{\text {a College of Environmental and Biological Engi- }}$ neering, Chongqing Technology and Business University, Chongqing 400067, People's
Republic of China, and ${ }^{\mathbf{b}}$ College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
tdlnjohn2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.125$
Data-to-parameter ratio $=13.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
9-(p-Tolylsulfonyl)-9H-carbazole

Two independent molecules constitute the asymmetric unit of the title compound, $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$, which was synthesized by N alkylation of 4-methylbenzenesulfonyl chloride with carbazole. The carbazole ring system is essentially planar and forms a dihedral angle with the benzene ring of $85.1(7)^{\circ}$ [83.9 (7) ${ }^{\circ}$ for the second molecule]. In the crystal structure, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are observed.

Comment

Carbazole derivatives substituted by N-alkylation exhibit useful pharmaceutical properties (Buu-Hoï \& Royer, 1950; Harfenist \& Joyner, 1983; Caulfield et al., 2002; Harper et al., 2002). In this paper, the structure of 9 -(p-tolylsulfonyl) $-9 H$ carbazole, (I), synthesized by N-alkylation of 4-methylbenzenesulfonyl chloride with carbazole, is reported.

(I)

The asymmetric unit of (I) contains two independent but similar molecules (Fig. 1). The carbazole ring systems in each are essentially planar, with mean deviations of 0.015 and $0.022 \AA$, consistent with recent determinations of similar structures (Huang et al., 2005; Duan et al., 2005). The dihedral angle formed between the carbazole ring system and the plane through the pendent benzene ring is $85.1(7)^{\circ}\left[83.9(7)^{\circ}\right.$ for the second molecule]. There are $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, as shown in Fig. 2 and detailed in Table 1.

Experimental

The title compound was prepared according to the procedure of Chakrabarti et al. (1989). Carbazole (1 g) dissolved in dimethylformamide $(25 \mathrm{ml})$ and benzene (25 ml) was treated with sodium hydride $(0.168 \mathrm{~g})$ in an ice bath for 30 min . To the cold stirred solu-

Received 10 March 2006
Accepted 16 March 2006
tion, 4-methylbenzenesulfonyl chloride (1.12 g) was added and the mixture stirred at room temperature for a further 4 h . The resulting mixture was then poured into water (40 ml) and extracted with benzene (100 ml). After drying the benzene extracts over anhydrous sodium sulfate, filtration and concentration, the solid product was recrystallized from EtOH , giving crystals of (I) (yield $0.90 \mathrm{~g}, 96 \%$; m.p. 393-394 K). Compound (I) (40 mg) was dissolved in a mixture of chloroform (6 ml) and ethanol (2 ml) and the solution was kept at room temperature for 10 d . Natural evaporation of the solution gave colourless crystals suitable for X-ray analysis.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$

$M_{r}=321.38$
Triclinic, $P \overline{1}$
$a=10.0889$ (18) \AA
$b=10.8104$ (19) \AA
$c=15.884$ (3) A
$\alpha=77.896(3)^{\circ}$
$\beta=72.353(3)^{\circ}$
$\gamma=84.459(3)^{\circ}$
$V=1613.1$ (5) \AA^{3}

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.323 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 2826
reflections
$\theta=2.6-26.3^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.30 \times 0.26 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.940, T_{\text {max }}=0.971$
8234 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.125$
$S=1.05$
5640 reflections
418 parameters
H -atom parameters constrained

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Part of the packing of the title compound, viewed down the a-axis direction. Dashed lines indicate hydrogen bonds.

References

Bruker (1997). SADABS (Version 2.0), SMART (Version 5.10), SAINT (Version 5.10) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Buu-Ної, N. P. \& Royer, R. (1950). J. Org. Chem. 15, 123-130.
Caulfield, T., Cherrier, M. P., Combeau, C. \& Mailliet, P. (2002). European Patent No. 1253141.
Chakrabarti, A., Goutam, K. B. \& Chakraborty, D. P. (1989). Tetrahedron, 45, 5059-5064.
Duan, X.-M., Huang, P.-M., Zheng, P.-W. \& Li, J.-S. (2005). Acta Cryst. E61, o3361-o3363.
Harfenist, M. \& Joyner, C. T. (1983). US Patent No. 4379160.
Harper, R. W., Lin, H. S. \& Richett, M. E. (2002). World Patent No. 02079154.
Huang, P.-M., Li, J.-S., Duan, X.-M., Zeng, T. \& Yan, X.-L. (2005). Acta Cryst. E61, o2366-o2367.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

